
1 February, 2004

Coordinated Atomic Actions and System
Fault Tolerance

Alexander Romanovsky

School of Computing Science
University of Newcastle upon Tyne

 alexander.romanovsky@newcastle.ac.uk

2 February, 2004

1. Overview

1. Overview

2. Aims of the Talk

3. Coordinated Atomic (CA) Actions

4. Integration of Complex Web Applications

5. CA Action Design of Web Applications

6. Future Work and Conclusions

3 February, 2004

This talk is about past, ongoing and future work on a fault tolerance (error
recovery) scheme.

Error recovery is often more complex than the normal activity. In many systems
more than 50-70% of the resources are dedicated to detecting and dealing with
abnormal situations. Dealing with abnormalities becomes every day issue.

The aims of the talk are:

• to introduce the concept of Coordinated Atomic (CA) actions that we developed in
Newcastle in late 90th

• to present our current work on application of CA actions for building complex
Web applications.

2. Aims of the Talk

4 February, 2004

Forward error recovery: the system is returned to an error-free state by applying
corrections to the damaged state. Such an approach demands some
understanding of the errors.

Backward error recovery: the system is recovered to a previous error-free state. No
knowledge of the errors in the system state is required.

Forward and backward error recovery techniques are complementary.

Forward error recovery allows efficient handling of expected exception conditions,
and backward error recovery provides a general strategy which will cope with
faults a designer did not (or chose not to) anticipate.

3. CA Actions: Forward and Backward Error Recovery

5 February, 2004

Exception handling is the most general means of providing forward error recovery.

The flow of control of a computation within a component should change as the result
of a raised exception.

Such an exceptional flow of control is distinguished from the normal flow of control.

Within a program, exceptional flow of control is associated with code fragments that
called exception handlers.

Exceptions, a software component, and exception handlers are linked together by a
handling context. Context nesting. System structuring!

process A

context 2

context 1

enable<x1:h1> enable<x1:h11, x3:h3> disable<x1:h11, x3:h3> disable<x1:h1>

3. CA Actions: Exception Handling

6 February, 2004

Exception handling and the provision of fault tolerance are more difficult in
concurrent/distributed systems than in sequential programs, e.g. several
exceptions may be raised concurrently in multiple concurrent activities.

Exception propagation in concurrent programs may not simply go through a
chain of nested callers, e.g. an exception may need to be propagated to the
members of a group of cooperating activities.

Distribution complicates further the cooperation and coordination of multiple
concurrent activities.

Damage confinement and assessment become more difficult in systems involving
complex interactions among concurrent activities.

3. CA Actions: Concurrent/Distributed Systems

7 February, 2004

ACID (atomicity, consistency, isolation, durability) transactions, which can be nested
and multi-threaded, provide concurrency control and backward recovery for
competing activities that are sharing external resources. Recovery of resources.

Conversations (B. Randell) provide coordination and backward recovery for
cooperating activities (processes, objects, threads, etc.), but do not support shared
external resources. Recovery of processes.

3. CA Actions: ACID Transactions and Atomic Actions

Process P1

Process P2

Process P3

Process P4
Conversation 1

Conversation 2

8 February, 2004

Atomic actions (R. Campbell and B. Randell) allow for exception handling in system
consisting of cooperating activities - when an exception occurs, every process in the
action has to switch to an appropriate handler, so that cooperative forward error
recovery is performed.

A Coordinated Atomic action (CA action) can be regarded as an atomic action that
also provides controlled access to shared external resources. Equally, it can be
regarded as a nested multi-threaded transaction with disciplined exception
handling.

3. CA Actions: ACID Transactions + Atomic Actions

cooperation and
competition

competitioncooperationcooperationconcurrency

FER and BERBERFERBERrecovery

CA actionsACID
Transactions

Atomic
Actions

Conversationsscheme

9 February, 2004

Activity T1

Activity T2

CA action

e

exception handler H1

abnormal control flow

exit after successful handling

entry points exit points

accesses recovery

exception handler H2

abnormal control flow

External Objects

start
transaction

commit
transaction

exception handling context

3. CA Actions: Internal Exceptions

10 February, 2004

A CA action is a generalised form of the basic atomic action structure.

Multi-Threaded Enclosure and Coordination - CA actions provide a mechanism for
enclosing and coordinating interactions among activities, and ensuring consistent
access to objects (resources) in the presence of complex concurrency and potential
faults.

Fault Tolerance - If an exception is raised inside a CA action, appropriate forward
and/or backward recovery measures will be invoked cooperatively in order to
reach some mutually consistent conclusion and, if possible, to recover.

Multiple Outcomes - CA actions combine exception handling with the nested action
structure to allow multiple outcomes, e.g. a normal outcome or some possible
exceptional outcomes.

CA actions (as well as ACID transactions, conversations, etc.) are nested structuring
units of system design and execution.

3. CA Actions

11 February, 2004

CA action

T1

T2

External objects act upon

Tn

raise ei signal εj

e = {e1, e2, e3, ...}
Exceptions inside the CA action must be declared with the
action definition and handled within the action

ε = {ε1, ε2, ε3,...} Exceptions to be signalled from the action to its environment
(e.g. the enclosing action) must be specified in the CA action
interface

Recursive relation: εnested is a subset of eenclosing

3. CA Actions: Action Nesting

12 February, 2004

In a distributed system different activities may raise different exceptions and the
exceptions may be raised simultaneously.

Concurrent exceptions must be handled in a coordinated manner.

Example: If there are two exceptions fire_alarm and gaze_leakage raised
concurrently in two distributed cooperating activities, their separate handling, or
handling them in any order, or ignoring either of them can cause serious harm.

There is a variety of reasons why several exceptions may be raised concurrently. For
example, it is often difficult to interrupt the normal operations of the other nodes
immediately after an exception has been raised or the several exceptions can be
symptoms of the same problems.

3. CA Actions: Concurrent Exceptions

13 February, 2004

Universal Exception e4

Emergency Engine Loss Exception e3

Left Engine
Exception e1

Right Engine
Exception e2

An exception resolution graph approach is developed in order to find the exception
that “covers” all the exceptions raised concurrently. The graph imposes partial
order on all internal action exceptions.

e1
e1 e2 e3

universal exception

e1 ∧ e2 ∧ e3

e1 ∧ e2 e1 ∧ e3 e2 ∧ e3

level 0

level 3

level 2

level 1

3. CA Actions: Concurrent Exception Resolution

14 February, 2004

CA actions allow us to design long-lived activities as they support:

• exception handling: you do not have to always abort and go back, you
rather try to handle the problem and continue

• action nesting (recursive system structuring, choice of the right level of
granularity) – lost computation can be minimised

• explicit application-specific programming of cooperation/competition
with respect to shared resources – minimise periods when shared
resource are locked

3. CA Actions: Long-Lived Activities

15 February, 2004

The FZI (Forschungszentrum Informatik, Germany) have specified and provided a
simulator for the Fault-Tolerant Production Cell.

It represents a manufacturing process involving six devices: two conveyor belts (a
feed belt and a deposit belt), an elevating rotary table, two presses and a rotary
robot that has two orthogonal extendible arms.

The task of the cell is to get metal blanks from its “environment” via the feed belt,
transform them into forged plates by using one of the presses, and then return
them to the environment via the deposit belt.

The challenge posed by FZI is to design a control system that maintains specified
safety and liveness properties even in the presence of a large number and variety of
device and sensor failures, and which continues to operate even if one of the presses
is non-operational.

Our aim was to show how concurrent exception handling and CA actions aid both the
design and validation of this control system.

3. CA Actions: A Case Study

16 February, 2004

!

deposit belt

traffic ligh for insertion

robot

arm_1

arm_2

system clock alarm signal

feed belt elevating
rotary
table

press_1

press_2

sensore
n
v
i
r
o
n
m
e
n
t

3. CA Actions: A Case Study

17 February, 2004

Our design uses 12 main CA actions; each action controls one step of the blank
processing and typically involves passing a blank between two devices.

A control program was implemented that uses a Java implementation of a distributed
CA action support (this scheme makes use of the nested multi-threaded transaction
facilities provided by the Arjuna transaction support system).

3. CA Actions: A Case Study

concurrent
threads CA action LoadPress1

RobotSensor

Robot(Arm1)

Press1Sensor

Press1

External
object

Blank

move press 1
to the middle
position

extend arm 1 retract
arm 1

access

rotate robot

synchronizing drop blank

18 February, 2004

press 1 in middle positionpress 1 in bottom position
blank in press 1no blank in press 1

press 1 offpress 1 off
robot angle: arm 1 towards press 1robot at one of the defined angles

both arms retractedBoth arms retracted
no blank on arm 1Blank on arm 1

robot offrobot off
post-conditionsPre-conditions

no blank in press 1
press 1 off

robot angle: arm 1 towards
press 2

both arms retractedPress 1 failure
blank on arm 1

robot off
exceptional post-conditionsException to signal

no blank in press 1

press 1 off

both arms retracted

blank on arm 1(rotary sensor or motor
failure) & Press 1 failure

robot off

exceptional post-conditionsException to signal

3. CA Actions: A Case Study

19 February, 2004

The program controls the FZI simulator. Overlaid on the screen are rectangular
outlines showing the scopes of these CA actions.

As the simulator is operated each of these outlines is gradually shaded in each time
the corresponding CA action is executed - the colour of this shading is changed
when the CA action is involved in exception handling, in response to simulated
faults.

A fault injector was implemented.

All injected device or sensor failures were caught successfully and handled
immediately by our control program. A previously unknown bug in the FZI
simulator was detected by a CA action and recovered automatically by the action
using the retry operation.

3. CA Actions: A Case Study

20 February, 2004

3. CA Actions: A Case Study

21 February, 2004

Several more case studies have been developed:

• a real-time Production Cell

• a distributed auction system

• a railway control system

• a distributed internet Gamma computation

CA actions were intentionally developed as a general concept.
There are concrete schemes for concurrent OO systems, process-oriented systems,

message-passing distributed systems, component-based systems.
These are “close” environments and architectures ...

3. CA Actions: Ongoing Research

22 February, 2004

The focus of this ongoing work is on developing techniques for building
dependable Web applications. The complex Web applications are being and will
be built by integration of existing Web services. This is typical of the emerging
service-oriented architecture paradigm.

Existing and future Web applications with high dependability requirements:
banking (bank portals), auctions, internet shopping, hotel/car/flight/train
reservation and booking, e-business, e-science (including the Grid computing),
business account management, …

4. Integration of Complex Web Applications

23 February, 2004

Complex systems of systems. Open systems. Web services to be integrated:
• are ready-made (COTS) components
• are autonomous systems without general control
• may not provide sufficient quality of service (“dirty” boxes - have bugs, do not fit,
have poor specification and documentation, etc.)
• are black boxes (no source code, no spec) with known interfaces
• belong to different organizations
• are heterogeneous: they have different standards, fault assumptions, follow
different conventions
• may be in operation when being integrated
• should provide individual services when integrated and when the integrated
systems fails
• may change their behaviour on the fly.

4. Integration of Complex Web Applications

24 February, 2004

In addition to that:
• integrated systems are to be used by general public lacking computer-related
skills
• the Internet is a poor communication medium: low quality, not predictable.
Dependability is a serious concern. These systems are inherently complex and are
prone to many faults of many types. Besides, multiple abnormal situations are
likely to happen concurrently.
Conventional hardware fault tolerance techniques (replication, ordered delivery,
group communication, TMR techniques and retry – cf OMG Fault Tolerant
CORBA service) can offer only partial solutions.

4. Integration of Complex Web Applications

25 February, 2004

We need fault tolerance mechanisms to deal with
• users’ mistakes
• components mistakes
• component systems not delivering the service requested
• environmental faults
• component mismatches
• application developers’ mistakes
• and with all types of errors propagated by the underlying levels (OS,
middleware, hardware) when they fail to deliver the required services.

This is software fault tolerance at the application level (i.e., the level of integrated
Web applications).

4. Integration of Complex Web Applications

26 February, 2004

Forward error recovery because rollback/abort is not the right approach to deal
with the faults of all these type. Compensation is a particular case of exception
handling (BPEL focus on compensation is misleading).

Besides, canonical ACID transactions are not applicable for the Web:

• the OASIS BTP (IONA, Sun, BEA Systems, Choreology, etc.),

• WS-Transactions&WS-Cooperation (submitted to W3C by IBM, MS and BEA).

Existing schemes do not offer structured solutions, do not address
cooperative/competitive systems, do not rely on cooperative exception handling.

CA actions are a good choice but there is a need for applying the general concept
to dealing with external non-ACID resources/components.

4. Integration of Complex Web Applications

27 February, 2004

General requirements for CA actions in the Web context. They should allow for:
• dealing with component systems that are outside of our control
• relaxing entry/exit synchronization (people, documents, organizations, goods, etc.)
• new participants to be forked/joined
• other component systems to be invited/involved into an action when necessary

But they should
• keep atomicity, exceptions and error propagation under control
• provide co-operative exception handling

We rely on C.T. Davies’ concept of spheres of control while extending CA actions.

We should talk about controlled atomicity.

5. CA Action Design of Web Applications

28 February, 2004

We use the canonical Travel Agency (TA) case study as a running example to
demonstrate our ideas. TA was designed as a pair:

• the TA front end - client side (TAFE-CS): web front-end, exception handling,
communication

• the TA front end - server side (TAFE-SS): access to existing services, trip
composition, exception handling, component system monitoring

Linking Interface (LIF) is a reduction of the component system (WS) specification
that includes its functional, temporal and dependability descriptions, which are
required for integration.

client TAFE-CS TAFE-SS

GeoDB

KLM

Hertz

Hilton

Sabena

L
I
F

L
I
FL

I
F

L
I
F

Travel Agency

5. CA Action Design of Web Applications: Travel Agency

29 February, 2004

Application-level software fault tolerance in TA is achieved by structuring TA
using nested CA actions and by employing disciplined exception handling
within this framework.

Cooperative exception handling at the action level can involve individual WSs,
people including the client, TA support, component system support (if
possible).

5. CA Action Design of Web Applications: Structuring

30 February, 2004

Each client session is a CA action consisting of a number of nested actions
performing: availability checking, trip booking, trip cancellation, payment,
etc.

5. CA Action Design of Web Applications: Structuring

action session

client controller

TA CS controller

TA SS controller

action
check_availability

action
booking

31 February, 2004

5. CA Action Design of Web Applications: Structuring

ct controller

flight

car

hotel action compose_trips

action
request

action
consult_services

client controller

TA CS controller

TA SS controller

action check_availability

action flight_availability

KLM
Sabena

BA

fa controller

32 February, 2004

An experimental implementation of the Internet Travel Agency using Java RMI
and JavaServer Page (JSP), and a distributed (RMI) CA action support
developed in Newcastle.

General implementation structure:

TA Client
Side

TA Server Side

legacy components

client JSP

LIFs

RMI

RMI

HTTP/HTML
JSP

RMI

HTTP/HTML

client

TA Client
Side

5. CA Action Design of Web Applications: Implementation

33 February, 2004

5. CA Action Design of Web Applications: Implementation

TA System

Client
browser

TA
CA actions

TA HTTP
server

(JSP/ASP)

Legacy
component

RMI
CORBA
SOAP
HTML

HTTP
Request RMI

CORBA

RMI
CORBA

RMI
CORBA

Client
browser

HTTP
request

34 February, 2004

Interfacing subsystems (LIFs) provide a number of functionalities, including
support for:

• turning a component system into a CA action participant taking part in all
action-specific activities such as cooperative exception handling (including
resolution of concurrent exceptions at the action level), action entry and exit
synchronisation (when necessary), etc.

• structuring the whole TA recursively using CA actions with component systems
taking part in these actions

• performing systematic and disciplined local error detection and exception
handling at the level of component systems and dealing with mismatches

Experience:

• structuring integrated WSs using CA actions

• systematic dealing with external non-ACID resources (weakening the
atomicity).

5. CA Action Design of Web Applications

35 February, 2004

CA actions allow for disciplined exception handling and system structuring for
fault tolerance. New characteristics:
• control of the WSs accessed during action execution
• cooperation of WSs (normal and abnormal behaviour)
• dedicated processes representing participation of the individual WSs in the
actions.
• flexible participation (using participant forking-joining)
• flexible structuring (action nesting and action composition)

5. CA Action Design of Web Applications: New Characteristics

36 February, 2004

Ongoing joint work between INRIA Rocquencourt (V. Issarny’s group) and
Newcastle U.

The WSCA (Web Service Composition Actions) scheme is an extension of CA
actions and their adaptation for this application area.

An XML-based language is under development. The WSCA language (WSCAL)
builds on coming W3C standards: Web Service Description Language (WSDL)
and Web Services Conversation Language (WSCL).

It allows dependable composition of WSs to be specified at an abstract level
supporting recursive system structuring and cooperative exception handling.

5. CA Action Design of Web Applications: WSCA

37 February, 2004

Our future work in the WS area focuses:

• on developing a middleware WSCAL support to allow the skeletons of the
composed applications to be automatically generated

• and on introducing extended CA actions into existing business-logic description
and composition languages (BPEL4WS).

5. CA Action Design of Web Applications: Future Work

38 February, 2004

6. Future Work and Conclusions

Fault tolerance in open dynamic loosely-coupled systems:
• Mapping the CA action concept into the context of agent systems. In particular,
introducing nested structuring and cooperative exception handling using LGI
• Development of the CA action-based schemes for mobile (e.g. tuple-based)
environments

Software engineering issues:
• Formalisation, including action and participant refinement and decomposition
• CA actions in software architecture/ADLs

CA actions for fault tolerance in service-oriented architectures.

39 February, 2004

6. Future Work and Conclusions

It is unfortunate and counterproductive to focus all efforts on making systems
faultless.

Exception handling is the most general means for tolerating faults of the widest
possible range.

Fault tolerance features to (e.g. exception handling mechanisms) should match the
development paradigm, the specific characteristics of the application domain, the
computational model.

(Recursive) system structuring and providing system fault tolerance should go
hand in hand in developing complex systems.

40 February, 2004

Thanks to Brian Randell, Avelino Zorzo, Valerie Issarny, Jie Xu, Cecilia
Rubira, Panos Perriorelis, Ian Welch, Robert Stroud, Galip-Ferda
Tartanoglu, Cliff Jones, Joey Coleman and Nicole Levy.

Two EC Projects:

Design for Validation - DeVa (1996-1999)

Dependable Systems of Systems - DSoS (2000-2003)

