
DeVa

University of Newcastle upon Tyne1

The CA Action ConceptThe CA Action Concept

Department of Computing Science
University of Newcastle upon Tyne

DeVa

University of Newcastle upon Tyne2

Outline

☞Basic Terms: Objects, Threads and Actions

☞Inter-Thread Concurrency

☞External Behaviour of a CA Action

☞Internal Activities of a CA Action

☞Recursive View

☞Error Recovery & Fault Tolerance

☞Towards Formalization of the CA Action Concept

☞Conclusions

DeVa

University of Newcastle upon Tyne3

Elements

 ObjectsObjects

An object is a named entity that combines a data structure (internal
state) with its associated operations that determines the externally visible
behaviour of the object.

 Threads Threads

Threads are the agents of computation (in a concurrent system). A
thread is an active entity that is responsible for executing a sequence of
operations on objects.
(Threads can exist syntactically, e.g. in Java, or as a purely run-time concept.)

DeVa

University of Newcastle upon Tyne4

Concurrency

☞Kinds of Inter-Thread Concurrency:

Independent Concurrencyndependent Concurrency
No sharing or interacting each other (e.g. disjoint object sets)

Competitive ConcurrencyCompetitive Concurrency
Sharing but no (explicit) cooperating (e.g. sharing not ordered)

Cooperative ConcurrencyCooperative Concurrency
Cooperating & interacting each other to achieve a joint goal
(i.e. each thread is responsible only for a part of the joint goal.)

DeVa

University of Newcastle upon Tyne5

Thread Cooperation
☞How concurrent execution threads cooperate? i.e. how

different threads can be glued together?

☞We attempt to model inter-thread cooperation as information
transfer via shared objects. Such an abstraction may cover
actual forms of inter-thread cooperation such as:

Inter-thread Communicationnter-thread Communication
1) updating shared objects (plus some synchro. mechanism)
2) message passing (without requiring shared storage)

Inter-thread SynchronizationInter-thread Synchronization
1) condition synchronization (usually no data passed)
2) exclusion synchronization (usually for shared object schemes)

DeVa

University of Newcastle upon Tyne6

Actions

 ActionsActions

An action is an abstraction that allows the application programmer to
group a set of operations on objects into a logical execution unit.
(An action may be associated with desirable properties, e.g. ACID.)

It provides another way of gluing multiple execution threads together.

A CA action is an enclosure of recoverable activities of multiple
cooperating threads.

DeVa

University of Newcastle upon Tyne7

External Behaviour of a CA Action

1) Participating threads enter the action (logically) synchronously
2) Participating threads leave the action (logically) synchronously
3) The action possesses ACID properties wrt external objects

(Failure) Atomicity -- All or nothing*;
Consistency -- If the state was consistent before the action it should be so after;
Isolation -- No interaction between the action and others (actions and threads)*;
Durability -- Any changes made during the action become permanent upon exit.

CA ActionThread 1

Thread 2

External
Objects

act upon

DeVa

University of Newcastle upon Tyne8

Coordination

Coordination is needed since a CA Action is concerned in
multiple concurrent execution threads (or multi-parties).

1) Coordination upon entrance;

2) Coordination upon exit; and

3) Coordination of handling exceptional situations.

DeVa

University of Newcastle upon Tyne9

Failure Atomicity

OR

normal outcome
exceptional outcome 1
exceptional outcome 2

exceptional outcome k

Abort exception, no results
Failure exception
(“undo” may have failed)

Output of a CA Action

DeVa

University of Newcastle upon Tyne10

Isolation

CA Action
Thread 1
Thread 2
Thread 3

Communication or
synchronization with
the threads outside

1) Direct or indirect interaction with the world outside the CA Action is NOT allowed
2) The possibility of implicit interaction with the outside via external shared objects
 is ruled out by the atomicity property, i.e. no intermediate results can be seen

Thread 4

DeVa

University of Newcastle upon Tyne11

Internal Activities of a CA Action
CA Action

Thread 1
Thread 2
Thread 3

External
Objects

act upon

Within a CA Action, each of the participating threads play a defined “role”.

1) Cooperation of Roles (i.e. Participating threads)--
 is via local shared objects

2) Action upon External Objects --
 Operations on the external objects can be invoked by roles

role 1

role 2

role 3

DeVa

University of Newcastle upon Tyne12

Nested CA Actions
CA Action a

Thread 1
Thread 2
Thread 3

External
Objects

act upon

Key properties:

1) Once action a obtains control over the external objects, the action can
 act upon them;
2) In line with normal rules for nested transactions, the external objects
 are still unaccessible for nested actions b and c until the nested actions
 obtain their own control over them;
3) The ACID properties of a nested action are always kept no matter how
 the action gains the external objects, i.e. competitively or cooperatively

role 1

role 2

role 3

b

c

DeVa

University of Newcastle upon Tyne13

Local Objects
CA Action a

Thread 1

Thread 2

Thread 3

Key properties:

1) “Local” means the world outside a given action knows nothing about
 the existence of such objects; they are created and deleted within the
 action
2) However, such local objects are external to any nested actions. A nested
 action has to obtain (from the containing action) control over them before
 it can act upon them with the ACID properties

role 1

role 2

role 3

b

c

local object

DeVa

University of Newcastle upon Tyne14

Recursive View

The CA action concept is thus recursive:
CA Action a

Thread 1

Thread 2

Thread 3

External
Objects

role 1

role 2

role 3

b

c

Local
Objects

* The external objects of the nested action c consist of both external objects and local
 objects of the containing action a

DeVa

University of Newcastle upon Tyne15

Forward Recovery of Internal Activities

handling
Thread 1

Thread 2

External
Objects

exception

correction

exit with
success
 (exceptional outcomes
 possible)

CA Action

synchronized invocation of
exception handlers

raise an
exception

presumably
correct

erroneous corrected

DeVa

University of Newcastle upon Tyne16

Backward Recovery of Internal Activities

handling
Thread 1

Thread 2

External
Objects

exception

undo effects

try a new
attempt
 (New attempt may lead
 to a successful outcome)

presumably
correct

erroneous original,
presumably correct

raise an
exception

synchronized invocation of
exception handlers

DeVa

University of Newcastle upon Tyne17

Fault Tolerance

1) Tolerating hardware-related faults can use standard
 transaction-based system techniques;
2) Recovery blocks or N-version programming techniques
 can be embedded with the CA action structure to
 tolerate software design faults:
 For example, when a CA action fails with an abort
 exception, a new action that has the same functionality
 but with diverse design can try a further attempt in the
 hope that the failure will not occur

 It is also possible to execute several variants of an action
 in parallel to achieve software fault masking and
 provide a timely outcome

