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Overview

q Our being able to control exceptions has provided a
significant advantage in being able to write more reliable
software

q While not explicitly helping us avoid errors, they enable
us to detect their presence and control their effects

q Yet they act in opposition to much of what we have
learned is good software design – simple structures with
well-defined control flows

q In addition, they complicate the process of performing
formal analyses on our systems

q In this talk we explore these issues
Extension of work reported in W.G. Bail. “Exception-handling Design Patterns”. Advances in
Computers, vol. 49. Academic Press, 191-238, 1999
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Outline

q History of exceptions – a love/hate relationship
ÿ What are they?

ÿ Why do we care?

ÿ How do we cope with them?

q The challenges
ÿ Complexity

ÿ Program proofs of correctness

ÿ Object-orientation

ÿ Others
_ Component-based design (and COTS)
_ Concurrency
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Our relationship with exceptions

q Exceptions have been with us for a long time
ÿ Originally uncontrolled – detected by entities outside of our

software programs

ÿ e.g., Grace Hopper’s moth – unannounced

q May occur when execution enters an error state
ÿ Often caused by code defects

ÿ or hardware (moth)

ÿ or erroneous inputs (wrong key)

q Mostly unwelcome
ÿ ABEND

q Luckily, software rarely has defects...
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What are “exceptions”, really?

q A condition dealing with the interaction between a client
and a server (a customer and a provider)
ÿ Client – the user of a capability

ÿ Server – the provider of a capability

ÿ Capability – some service (+, /, alloc(), SORT, Kalman filter,...)

q Exception – the unexpected or unusual condition where
the server fails to carry out a requested or expected
operation
ÿ State of system is considered to be “abnormal” (error state)

ÿ Server may attempt recovery (handle exception) or inform client
that the operation failed (propagate exception)
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What causes abnormal states?

q Two general sources:
ÿ Software defects – erroneous logic in the code - caused by

_ mistakes made by programmers
_ mistakes in the design or in the requirements
_ erroneous code produced by a compiler or application generator
_ caused by hardware failure (processor fault)

ÿ Erroneous data – improper or unexpected data – caused by
_ input by an operator
_ transmitted by another system
_ be corrupted by faulty hardware or by a noisy communications channel

(moth)
_ exist in databases used by the software
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Options for coping with exceptions

q Just let them happen (historical precedent), or

q Try to control them via exception handling (i.e., a class of
mechanisms and design approaches for dealing with
effects of abnormal (exceptional) conditions), such as:
ÿ Correct the problem and retry (forward recovery)

ÿ Roll-back to a previous state and continue (backward recovery)

ÿ Attempt correction and continue at a reduced capability (graceful
degradation)

ÿ Skip the operation and continue

ÿ Terminate execution under control (fail-safe)

ÿ Propagate the exception (let someone else worry about it)

ÿ Record the exception to a logging file
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Handling exceptions

q Exception handling involves three distinct functions:
ÿ Detection – determining that the current state of computation is

abnormal (of course, we have to know what is abnormal)

ÿ Propagation – notifying client that an error state has been
detected (in a way that allows them to take action)

ÿ Handling – performing recovery actions to mitigate the effect(s)
of the error state

q Programming languages may provide mechanisms for
working with exceptions
ÿ Allowing us to separate exception handling from normal

processing, reducing design complexity

q If not, we need to insert exception handling code
manually (defensive programming)
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Maturation of exception handling

q Originally, we just corrected the code

q Later, after getting tired of their sneaking up on us, we
started to watch for them and control them by inserting
defensive code

q Still later, after getting tired of writing all that extra code,
we added capabilities into languages to help us
ÿ Middle 1960s – PL/1

ÿ Followed by many other languages, incl CLU, Ada83, C++,
Ada95, Eiffel, Java, ...

q We have gotten much better
ÿ but each new SW technique (e.g., OO) brings new challenges

ÿ Exceptions just don’t fit in – they disturb our nice abstractions
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Why do we want to handle exceptions?

q Random failures get annoying
ÿ Especially when someone else tells us about them (e.g., the OS)

q They
ÿ remind us of our failures

ÿ interrupt us when we are in the middle of doing real work

ÿ perturb our natural flow of logic

ÿ make us think defensively

q But, if there is always a chance of failure, but never
knowing when, our systems are not dependable
ÿ We never know what is going to happen

ÿ Not a good thing in general

ÿ How does your plane’s software handle exceptions?  Ignore
them?
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Strategies

q Two general strategies: show that exceptions won’t
happen, or control them when they do

q Show that they won’t happen (before execution)
ÿ Restrict language use

_ e.g., SPARK / Ravenscar

ÿ Demonstrate that error states cannot happen via logic
_ Made possible by restricted logic
_ (of course, random cosmic waves or moths could always occur)

q Control them when they do (after execution)
ÿ Extensive use of run-time checks (explicit)

ÿ Establish system-wide error handling policies as a part of design
_ and follow them
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Aspects of error handling policies

q Four parts to design process:
ÿ Allocation of responsibility – the assignment of error handling

responsibility in the detection, propagation, and correction of
error states (exception-handling protocols)

_ Who does what?

ÿ Exception semantics – the conditions which the exceptions are
to signal

_ What is it telling me?

ÿ Global design patterns – the overall structure of exceptions
across the system to be developed

_ How does it all work together?

ÿ Local design patterns – (implementation mechanisms) – the
specific language features that will be used to implement the
exception handling logic

_ How do I do it?
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The challenges

q Complexity

q Program proofs of correctness

q Object-orientation
q Component-based design (and COTS)

q Concurrency



14

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

Challenges – effect on complexity

q By adding new (and hidden) control paths, exceptions
make our software more complex

q Consider effect on cyclomatic complexity
ÿ Explicit error handling adds execution paths – hence increases

complexity

ÿ Implicit error handling...the same effect...but not as obvious

q Sample function – a binary search written in Ada83

q Remember, cyclomatic complexity V(g) = number of independent
paths through code segment
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Sample function

FUNCTION Search (
Item: Integer;
List: ItemList;
Start_Pos: Integer;
End_Pos: Integer)
RETURN Integer IS

Result: Integer ;
Upper, Lower, Ptr: Integer RANGE

                                          List'RANGE;
Found_it : Boolean;

BEGIN
Lower := Start_Pos;
Upper := End_Pos;
Result := 0;
Found_it := False;
WHILE ( (Upper >= Lower) AND

(NOT Found_it )) LOOP

Ptr := (Upper+Lower)/2;
IF ( List(Ptr) /= Item ) THEN

IF ( Item < List(Ptr) ) THEN
Upper := Ptr - 1;

ELSE
Lower := Ptr + 1;

END IF;
ELSE

Found_it := True;
Result := Ptr;

END IF;
END LOOP;
RETURN Result;
END;

A simple binary search
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Preconditions for the code

q For the code to execute correctly, certain conditions
must be met:
ÿ The subrange provided is within the range of the array

ÿ The start of the subrange is less than the end of the subrange

ÿ The list is sorted in ascending order

q However, no explicit checks are performed in the code to
verify that these assumptions are valid

q Let’s compute V(g)
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Function flow chart

Rather simple
Fairly clean

Upper >= Lower

NOT Found_it

List(Ptr) /= Item

Item < List(Ptr)
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Independent paths

Five independent paths, so V(g) = 5

1 2 3 4 5
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But wait...

q What happens if we consider implicit exception
handling?
ÿ According to cyclomatic complexity rules, we need to include all

paths

q We need to analyze the code to determine what the
implicit paths are

q Since this was written in Ada, such paths exist
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Analysis of code
FUNCTION Search ( Item: Integer;

List: ItemList;
Start_Pos: Integer;
End_Pos: Integer)
RETURN Integer IS
Result: Integer ;
Upper, Lower, Ptr: Integer RANGE List'RANGE;
Found_it : Boolean;

BEGIN
Lower := Start_Pos;
Upper := End_Pos;
Result := 0;
Found_it := False;
WHILE ( (Upper >= Lower) AND

(NOT Found_it )) LOOP
Ptr := (Upper+Lower)/2;
IF ( List(Ptr) /= Item ) THEN

IF ( Item < List(Ptr) ) THEN
Upper := Ptr - 1;

ELSE
Lower := Ptr + 1;

END IF;
ELSE

Found_it := True;
Result := Ptr;

END IF;
END LOOP;
RETURN Result;
END;

Potential for implicit execution
path due to exceptions
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Results in new control flow graph

exception
return

No longer simple and clean
V(g) = 9 (almost twice as complex)

and this is really annoying
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More bad news

q It is even worse than that

q In order to compute V(g) need to analyze environment of
function for other declarations

q Additional exceptions may be possible
ÿ or the ones identified may be not possible

q This obscures the real structure of the code
ÿ Making it harder to think and reason about it

q Major effects
ÿ Perturbs our normal thought process

ÿ Execution no longer smooth and continuous

ÿ Requires complicated analysis process
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Challenges – effect on formal methods

q Remember
ÿ Structured programming?

ÿ Go to statement considered harmful

q Belief was (and still is) that certain program constructs
promoted understanding and the ability to generate
proofs of program correctness

q Harlan Mills limited developers to 7 constructs:

Function – f
Sequence –  f; g
If…then – if p then f
If…then…else – if p then f else
g;

Whiledo – while p do f ;
Do until – do f until p;
Do…while…do – do f while p do
g ;
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Why are these important?

q These forms have well defined semantics that support
formal verification
ÿ and informal understanding

q These forms are prime programs
ÿ A prime program is a proper program that has no proper

subprogram of more than one node

q are used to form proper programs
ÿ A proper program

_ has a single entrance and a single exit, and
_ all nodes have a path through that node from the entry to the exit
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What they look like...

sequence

f

g

if...then...

f

p
f

function if...then...else

f

p

g

while...do

f

p

do...until

f

p

do...while...do

g

p

g
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So what?

q For each proper program, its computation can be
expressed in a logical form
ÿ Made possible by the single entry and single exit point (reduce

side effects)

f:
if

p
then

g
end if

(p Æ f = g | ÿp Æ nil )

the function can be expressed as
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But what about...

Where is the proper program? and what is its function?
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Challenges – exception handling in OO

q Current approach – method-based exception
Propagation
ÿ Granularity increments between method and client

q Recommended approach – object-based exception
propagation
ÿ Added object level of granularity
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Method-based exception propagation

q Typical approach

q Granularity at method level
ÿ Function-based concept

ÿ Direct client to server interaction

q Loss of control of grain size
ÿ No direct filtering at object level

q Fails to provide object with
appropriate level of authority
and responsibility

Request for service

Response

Request for service

Request for service

Response

Response
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Inheritance and object-based exceptions

q Through inheritance, specialized subclasses receive
class-wide exceptions and handlers

q Not method based – hence can exploit common handling
strategies

q Able to update class-wide handlers without disturbing
existing ones Root

attributes

methods
exceptions

Tree

attributesTree

methodsTree

exceptionsTree

Bush

attributesBush

methodsBush

exceptionsBush
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Challenge – component-based design

q Constructing systems out of pre-existing components is
seen as a viable, cost-effective strategy for future system
development

q Perhaps by using a module interface language (MIL)

q But...

q Unless the components adhere to a common error
handling policy, disjoint handling of exceptions will occur
ÿ e.g., what about COTS?

q Requires establishing domain-wide architectural
requirements
ÿ or creation of standard wrappers around non-conforming

components...but how?
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Challenge – concurrency

q Time-based logic is inherently very difficult
ÿ Needed to understand behavior of real-time systems

q Based on analysis of time demands and logic of
design/code

q Exception handling places new and additional
challenges to the analysis of this logic
ÿ “Where did that come from?”

q Need to understand the underlying principles behind how
to select architectural features
ÿ What should we do, what shouldn’t we do, how do we know

when and where?
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Parting message

q We have come far

q We have exceptions partially under control

q But where we want to go has additional challenges
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