
Getting control of exceptions

Presented to the Workshop on Exception Handling in Object
Oriented Systems: towards Emerging Application Areas and New
Programming Paradigms

21 July 2003

William Bail
The MITRE Corporation and The University of Maryland



2

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

Overview

q Our being able to control exceptions has provided a
significant advantage in being able to write more reliable
software

q While not explicitly helping us avoid errors, they enable
us to detect their presence and control their effects

q Yet they act in opposition to much of what we have
learned is good software design – simple structures with
well-defined control flows

q In addition, they complicate the process of performing
formal analyses on our systems

q In this talk we explore these issues
Extension of work reported in W.G. Bail. “Exception-handling Design Patterns”. Advances in
Computers, vol. 49. Academic Press, 191-238, 1999



3

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

Outline

q History of exceptions – a love/hate relationship
ÿ What are they?

ÿ Why do we care?

ÿ How do we cope with them?

q The challenges
ÿ Complexity

ÿ Program proofs of correctness

ÿ Object-orientation

ÿ Others
_ Component-based design (and COTS)
_ Concurrency



4

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

Our relationship with exceptions

q Exceptions have been with us for a long time
ÿ Originally uncontrolled – detected by entities outside of our

software programs

ÿ e.g., Grace Hopper’s moth – unannounced

q May occur when execution enters an error state
ÿ Often caused by code defects

ÿ or hardware (moth)

ÿ or erroneous inputs (wrong key)

q Mostly unwelcome
ÿ ABEND

q Luckily, software rarely has defects...



5

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

What are “exceptions”, really?

q A condition dealing with the interaction between a client
and a server (a customer and a provider)
ÿ Client – the user of a capability

ÿ Server – the provider of a capability

ÿ Capability – some service (+, /, alloc(), SORT, Kalman filter,...)

q Exception – the unexpected or unusual condition where
the server fails to carry out a requested or expected
operation
ÿ State of system is considered to be “abnormal” (error state)

ÿ Server may attempt recovery (handle exception) or inform client
that the operation failed (propagate exception)



6

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

What causes abnormal states?

q Two general sources:
ÿ Software defects – erroneous logic in the code - caused by

_ mistakes made by programmers
_ mistakes in the design or in the requirements
_ erroneous code produced by a compiler or application generator
_ caused by hardware failure (processor fault)

ÿ Erroneous data – improper or unexpected data – caused by
_ input by an operator
_ transmitted by another system
_ be corrupted by faulty hardware or by a noisy communications channel

(moth)
_ exist in databases used by the software



7

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

Options for coping with exceptions

q Just let them happen (historical precedent), or

q Try to control them via exception handling (i.e., a class of
mechanisms and design approaches for dealing with
effects of abnormal (exceptional) conditions), such as:
ÿ Correct the problem and retry (forward recovery)

ÿ Roll-back to a previous state and continue (backward recovery)

ÿ Attempt correction and continue at a reduced capability (graceful
degradation)

ÿ Skip the operation and continue

ÿ Terminate execution under control (fail-safe)

ÿ Propagate the exception (let someone else worry about it)

ÿ Record the exception to a logging file



8

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

Handling exceptions

q Exception handling involves three distinct functions:
ÿ Detection – determining that the current state of computation is

abnormal (of course, we have to know what is abnormal)

ÿ Propagation – notifying client that an error state has been
detected (in a way that allows them to take action)

ÿ Handling – performing recovery actions to mitigate the effect(s)
of the error state

q Programming languages may provide mechanisms for
working with exceptions
ÿ Allowing us to separate exception handling from normal

processing, reducing design complexity

q If not, we need to insert exception handling code
manually (defensive programming)



9

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

Maturation of exception handling

q Originally, we just corrected the code

q Later, after getting tired of their sneaking up on us, we
started to watch for them and control them by inserting
defensive code

q Still later, after getting tired of writing all that extra code,
we added capabilities into languages to help us
ÿ Middle 1960s – PL/1

ÿ Followed by many other languages, incl CLU, Ada83, C++,
Ada95, Eiffel, Java, ...

q We have gotten much better
ÿ but each new SW technique (e.g., OO) brings new challenges

ÿ Exceptions just don’t fit in – they disturb our nice abstractions



10

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

Why do we want to handle exceptions?

q Random failures get annoying
ÿ Especially when someone else tells us about them (e.g., the OS)

q They
ÿ remind us of our failures

ÿ interrupt us when we are in the middle of doing real work

ÿ perturb our natural flow of logic

ÿ make us think defensively

q But, if there is always a chance of failure, but never
knowing when, our systems are not dependable
ÿ We never know what is going to happen

ÿ Not a good thing in general

ÿ How does your plane’s software handle exceptions?  Ignore
them?



11

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

Strategies

q Two general strategies: show that exceptions won’t
happen, or control them when they do

q Show that they won’t happen (before execution)
ÿ Restrict language use

_ e.g., SPARK / Ravenscar

ÿ Demonstrate that error states cannot happen via logic
_ Made possible by restricted logic
_ (of course, random cosmic waves or moths could always occur)

q Control them when they do (after execution)
ÿ Extensive use of run-time checks (explicit)

ÿ Establish system-wide error handling policies as a part of design
_ and follow them



12

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

Aspects of error handling policies

q Four parts to design process:
ÿ Allocation of responsibility – the assignment of error handling

responsibility in the detection, propagation, and correction of
error states (exception-handling protocols)

_ Who does what?

ÿ Exception semantics – the conditions which the exceptions are
to signal

_ What is it telling me?

ÿ Global design patterns – the overall structure of exceptions
across the system to be developed

_ How does it all work together?

ÿ Local design patterns – (implementation mechanisms) – the
specific language features that will be used to implement the
exception handling logic

_ How do I do it?



13

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

The challenges

q Complexity

q Program proofs of correctness

q Object-orientation
q Component-based design (and COTS)

q Concurrency



14

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

Challenges – effect on complexity

q By adding new (and hidden) control paths, exceptions
make our software more complex

q Consider effect on cyclomatic complexity
ÿ Explicit error handling adds execution paths – hence increases

complexity

ÿ Implicit error handling...the same effect...but not as obvious

q Sample function – a binary search written in Ada83

q Remember, cyclomatic complexity V(g) = number of independent
paths through code segment



15

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

Sample function

FUNCTION Search (
Item: Integer;
List: ItemList;
Start_Pos: Integer;
End_Pos: Integer)
RETURN Integer IS

Result: Integer ;
Upper, Lower, Ptr: Integer RANGE

                                          List'RANGE;
Found_it : Boolean;

BEGIN
Lower := Start_Pos;
Upper := End_Pos;
Result := 0;
Found_it := False;
WHILE ( (Upper >= Lower) AND

(NOT Found_it )) LOOP

Ptr := (Upper+Lower)/2;
IF ( List(Ptr) /= Item ) THEN

IF ( Item < List(Ptr) ) THEN
Upper := Ptr - 1;

ELSE
Lower := Ptr + 1;

END IF;
ELSE

Found_it := True;
Result := Ptr;

END IF;
END LOOP;
RETURN Result;
END;

A simple binary search



16

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

Preconditions for the code

q For the code to execute correctly, certain conditions
must be met:
ÿ The subrange provided is within the range of the array

ÿ The start of the subrange is less than the end of the subrange

ÿ The list is sorted in ascending order

q However, no explicit checks are performed in the code to
verify that these assumptions are valid

q Let’s compute V(g)



17

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

Function flow chart

Rather simple
Fairly clean

Upper >= Lower

NOT Found_it

List(Ptr) /= Item

Item < List(Ptr)



18

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

Independent paths

Five independent paths, so V(g) = 5

1 2 3 4 5



19

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

But wait...

q What happens if we consider implicit exception
handling?
ÿ According to cyclomatic complexity rules, we need to include all

paths

q We need to analyze the code to determine what the
implicit paths are

q Since this was written in Ada, such paths exist



20

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

Analysis of code
FUNCTION Search ( Item: Integer;

List: ItemList;
Start_Pos: Integer;
End_Pos: Integer)
RETURN Integer IS
Result: Integer ;
Upper, Lower, Ptr: Integer RANGE List'RANGE;
Found_it : Boolean;

BEGIN
Lower := Start_Pos;
Upper := End_Pos;
Result := 0;
Found_it := False;
WHILE ( (Upper >= Lower) AND

(NOT Found_it )) LOOP
Ptr := (Upper+Lower)/2;
IF ( List(Ptr) /= Item ) THEN

IF ( Item < List(Ptr) ) THEN
Upper := Ptr - 1;

ELSE
Lower := Ptr + 1;

END IF;
ELSE

Found_it := True;
Result := Ptr;

END IF;
END LOOP;
RETURN Result;
END;

Potential for implicit execution
path due to exceptions



21

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

Results in new control flow graph

exception
return

No longer simple and clean
V(g) = 9 (almost twice as complex)

and this is really annoying



22

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

More bad news

q It is even worse than that

q In order to compute V(g) need to analyze environment of
function for other declarations

q Additional exceptions may be possible
ÿ or the ones identified may be not possible

q This obscures the real structure of the code
ÿ Making it harder to think and reason about it

q Major effects
ÿ Perturbs our normal thought process

ÿ Execution no longer smooth and continuous

ÿ Requires complicated analysis process



23

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

Challenges – effect on formal methods

q Remember
ÿ Structured programming?

ÿ Go to statement considered harmful

q Belief was (and still is) that certain program constructs
promoted understanding and the ability to generate
proofs of program correctness

q Harlan Mills limited developers to 7 constructs:

Function – f
Sequence –  f; g
If…then – if p then f
If…then…else – if p then f else
g;

Whiledo – while p do f ;
Do until – do f until p;
Do…while…do – do f while p do
g ;



24

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

Why are these important?

q These forms have well defined semantics that support
formal verification
ÿ and informal understanding

q These forms are prime programs
ÿ A prime program is a proper program that has no proper

subprogram of more than one node

q are used to form proper programs
ÿ A proper program

_ has a single entrance and a single exit, and
_ all nodes have a path through that node from the entry to the exit



25

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

What they look like...

sequence

f

g

if...then...

f

p
f

function if...then...else

f

p

g

while...do

f

p

do...until

f

p

do...while...do

g

p

g



26

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

So what?

q For each proper program, its computation can be
expressed in a logical form
ÿ Made possible by the single entry and single exit point (reduce

side effects)

f:
if

p
then

g
end if

(p Æ f = g | ÿp Æ nil )

the function can be expressed as



27

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

But what about...

Where is the proper program? and what is its function?



28

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

Challenges – exception handling in OO

q Current approach – method-based exception
Propagation
ÿ Granularity increments between method and client

q Recommended approach – object-based exception
propagation
ÿ Added object level of granularity



29

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

Method-based exception propagation

q Typical approach

q Granularity at method level
ÿ Function-based concept

ÿ Direct client to server interaction

q Loss of control of grain size
ÿ No direct filtering at object level

q Fails to provide object with
appropriate level of authority
and responsibility

Request for service

Response

Request for service

Request for service

Response

Response





31

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

Inheritance and object-based exceptions

q Through inheritance, specialized subclasses receive
class-wide exceptions and handlers

q Not method based – hence can exploit common handling
strategies

q Able to update class-wide handlers without disturbing
existing ones Root

attributes

methods
exceptions

Tree

attributesTree

methodsTree

exceptionsTree

Bush

attributesBush

methodsBush

exceptionsBush



32

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

Challenge – component-based design

q Constructing systems out of pre-existing components is
seen as a viable, cost-effective strategy for future system
development

q Perhaps by using a module interface language (MIL)

q But...

q Unless the components adhere to a common error
handling policy, disjoint handling of exceptions will occur
ÿ e.g., what about COTS?

q Requires establishing domain-wide architectural
requirements
ÿ or creation of standard wrappers around non-conforming

components...but how?



33

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

Challenge – concurrency

q Time-based logic is inherently very difficult
ÿ Needed to understand behavior of real-time systems

q Based on analysis of time demands and logic of
design/code

q Exception handling places new and additional
challenges to the analysis of this logic
ÿ “Where did that come from?”

q Need to understand the underlying principles behind how
to select architectural features
ÿ What should we do, what shouldn’t we do, how do we know

when and where?



34

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

Parting message

q We have come far

q We have exceptions partially under control

q But where we want to go has additional challenges



35

Exception Handling in Object Oriented Systems: Towards Emerging Application Areas and New
                                               Programming Paradigms– 21 July 2003

References
q Amey, Peter, and Roderick Chapman. Industrial Strength Exception Freedom. ACM SIGAda

Annual International Conference (SIGAda 2002)

q Bail, W.G. “Exception-handling Design Patterns”. Advances in Computers, vol. 49. Academic
Press, 191-238, 1999

q Goodenough, J. (1975) “Exception Handling: Issues and a Proposed Notation”, Communications
of the ACM (December 1975), 683-696

q Linger, R.C, H.D. Mills, and B. I. Witt. Structured Programming – Theory and Practice. Addison-
Wesley: Reading MA. 1979.


