
July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

1

Primitives and Mechanisms of the
Guardian Model for Exception

Handling in Distributed Systems

Robert Miller and Anand Tripathi
Computer Science Department

University of Minnesota, Minneapolis, MN 55455

Acknowledgements:

• This work was partially supported by NSF grants
ANI 0087514 and ITR 0082215.

• Robert Miller thanks IBM for its support through the
Graduate Work Study Program.

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

2

Outline

1. Objective

2. Exception Handling Models for Distributed Programs

– Issues in Exception Handling for Distributed
Programs

3. Guardian Model for Exception Handling

– Guardian execution model

– Notion of “contexts”

4. Examples of Exception Handling in Distributed
Programs using the Guardian Model

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

3

Exceptions in Distributed Programs

• A distributed application consists of multiple processes
executing asynchronously.

• A process may encounter (signal) an exception which
may be independent of the state of other processes.

• Multiple exceptions may occur concurrently in different
processes.
– These may or may not be related to each other.

• For recovery, an exception in one process may need to be
communicated to the other processes to be raised in
them, and their exception handlers may need to perform
coordinated recovery.

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

4

Distributed Exception Handling Issues

• When an exception condition occurs in a process;
– Which other processes should be informed of this

exception?
– Should the same exception be raised in all other

processes?
• Thus a process may receive an exception that is

asynchronous (and unrelated) to its current execution state.

• When multiple exceptions occur concurrently in
different processes:
– Should all exceptions be resolved into one single

exception?
– Should all these exceptions be delivered to different

processes in a fixed sequential order?

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

5

Exception Handling in Distributed
Programming

• Exceptions in RMI based interaction models

• Concurrent Exception Handling Models

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

6

Distributed Exception Handling Issues

• When an exception condition occurs in a process;
– Which other processes should be informed of this exception?

– Should the same exception be raised in all other processes?

• Thus a process may receive an exception that is
asynchronous (and unrelated) to its current execution state.

Exception

Process A Process CProcess B Process D

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

7

Exceptions in RMI based interaction
models

• An RMI operation may signal an exception to its invoker.

– This model is adopted in Java, CORBA and other
distributed programming languages and middleware.

• The exception occurrence is synchronous to the invoker’s
execution context.

• Exception is raised in the server and signaled to the
invoker (client).

• Limited to synchronous interactions between two
processes.

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

8

Concurrent Exception Handling
Models

• Primarily developed for conversation and transaction
based interactions.
– Campbell and Randell [TSE 1986]
– Coordinated Atomic Actions by Xu, Romanovsky,

Randell [TSE 2000]
– Open Multithreaded Transactions by Kienzle,

Romanovksy, Strohmeier [2001]
• Concept of exception resolution based on tree based

hierarchy of exceptions.
• All processes in an atomic action handle the same

exception.

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

9

Exception Handling in Conversations

Process 1

Process 2

Process 3

Exception Handler

Exception Handler

Exception Handler

e1

Atomic Action

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

10

Exception Handling in Conversations

Process 1

Process 2

Process 3

Exception Handler

Exception Handler

Exception Handler

e1

Atomic Action

Resolved exception

e2

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

11

Limitations of Current Approaches

• RMI based exception model is primarily limited to
synchronous interactions between a pair of processes.

• Models for multiple processes are limited to programs
structured using conversations and transactions.
– Many applications do not conform to such structuring:

parallel computing, distributed simulations, agent-based
programs, monitoring systems.

– Many applications require approaches other than
resolution for handling concurrent exceptions.

– In some cases an exception signaled in a process may
need to be raised as different exceptions in other
processes.

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

12

Basic Problems

• An exception may be signaled asynchronously in a
process. The process may not be in the right context to
handle the exception.

• Multiple exceptions may be raised concurrently in a
distributed system. The current model using resolution
are applicable only to conversations. A general model is
lacking.

• Exception handler in distributed processes may need to
coordinate with each other for recovery.

For exception handling in distributed systems, each
affected process must invoke the semantically correct
handler.

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

13

Guardian Abstraction

• A guardian represents a centralized abstraction
associated with a distributed application.

• It provides a set of primitives for global exception
handling.

• It encapsulates the programmer-defined rules for
coordinating the exception handling actions of different
processes in its distributed application.

• It determines how an exception in one process should
be signaled to other processes or how to handle
concurrent exceptions.

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

14

Guardian Abstraction…

• Its function is to use application-defined rules to direct
a process to appropriate exception handlers.

• It separates the global exception handling and recovery
policies from the handling of local exception that can be
handled internally by a process itself.

• It is implemented as a replicated object, using a group
of processes, one member in this group corresponding
to each application process.

• It assumes the timed-asynchronous execution model.

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

15

Guardian Abstraction…

Guardian Group Communication Primitives

Host A Host B Host C

Application
Process 1

Guardian
Member 1

Application
Process 2

Application
Process 3

Guardian
Member 2

Guardian
Member 3

Guardian

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

16

Guardian Model

It consist of the following elements:

1. The concept of exception contexts and process contexts.

2. A set of guardian primitives that are invoked by the
application processes.

3. Application-defined global exception handling rules.

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

17

Global Exceptions

• A distributed application system can define a number
global exceptions, which would be raised through its
guardian.

• Additionally, there are certain system defined global
exceptions:

– Membership exceptions:
• Participant join and leave events

– Environment exceptions:
• Resource failures

• Deadlocks

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

18

Contexts

• A context is a programmer-defined symbolic name
associated with an execution phase of the process.

• Its purpose is to determine which processes should
participate in a recovery action and which of their
handlers should be executed.

• A context list is associated with each process.

• When an exception is raised in a process, a target
context is specified which indicates the context in which
the receiving process should handle the exception.

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

19

Guardian Primitives
1. gthrow (GlobalException, ParticipantList)

– An application process invokes this guardian function to raise
a global exception in the specified set of processes.

2. checkExceptionStatus()

– A process calls this function to check if there is any global
exception for it that is pending to be raised in it.

– This function raises such a pending exception, otherwise it
returns without any effect.

3. propagate()

– This function is called by a process in an handler to
determine if it has the right context to handle its current
global exception. If so, the function returns false, otherwise
true

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

20

Guardian Primitives

4. enableContext (Context, Exception List)

– Using this function a process informs the guardian
that it is entering a new context and it has handlers
for the exceptions in the given list.

– The guardian maintains for each process an
ordered list of its current contexts, and for each
context in the list it contains the exceptions that
can be handled by the process.

5. removeContext()

– The most recent context is deleted by the guardian.

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

21

Process Identifiers for Recovery Rules

• For the purpose of recovery actions, processes
(participants) of a distributed application are identified
using their contexts.

For example, if the current context list of a process is

C1 ‡ C2 ‡ C3

Then such a process is identified as C1/C2/C3

• A set of participants can be identified by a regular
expression using contexts. For example:

*/C2 matches all processes whose current context is C2.

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

22

Recovery Rules
• Input is one or more exceptions.
• Output is a list of exceptions for each process that

needs to participate in recovery.
• Two kinds of rules:

1. A set of rules to deal with occurrence of a single
exception (sequential rules).

2. A set of rules to deal with the situation when
multiple exceptions occur concurrently (concurrent
rules).

1. Priority table that associates an exception type with
priority level

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

23

Recovery Rules ...

• Concurrent rules first. After all rules execute, output is one

Output Sequential List (OSL) of exceptions

• For each exception in OSL, sequential rules applied. Output

of rule appends exception to be signaled in process to

Output Exception List (OEL) of process

• Process may have multiple exceptions on its OEL

• Exceptions in OEL are in priority order

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

24

Structure of Concurrent Exception
Handling

• Input: ES -- a set of concurrent exceptions
• Output: OSL (Output Sequential List)

1. The set of exceptions is divided into subsets. Each subset
corresponds to a priority level.

2. Exception resolutions rules are applied to each priority
level, and the resulting exceptions are put in the OSL.

3. The exceptions in OSL are then sequentially processed by
the previous rules.

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

25

Structure of Single Exception Handling

• Input: Exception E (Only one exception to be handled)
• Output: OEL (Output Exception List), for each process it

contains an exception to be signaled.
when signaled exception is E do {
 Let PL be the list of participants satisfying identifier

expression PE;
 Let PS be the subset of PL satisfying predicate S;
 for each p in PS do {
 OEL.insert (p, Ep(Cp));

 // Exception Ep with target context Cp;
 }
}

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

26

Example of Guardian Application

• Conversation Based Exception Handling

• Fault-Tolerant Barrier Synchronization

• Primary-Backup System

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

27

Conversations

• Conversations is well known exception handling model

• Guardian can simplify implementation of conversations

– Conversation entry and exit are barriers

– Contexts denote conversation name, similar to
barriers

• Guardian can enhance conversations

– System exceptions

– Situations that can not resolve concurrent exceptions
into one exception

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

28

Simple Conversation Program
myG.enableContext(“Conv”, GlobalException);
try {

myG.enableInterrupts();
 b.barrier(myG);

myG.disableInterrupts();
doWork();
if (error) myG.gthrow(new GlobalException(‘Error’);
myG.enableInterrupts();

 b.barrier(myG);
 return;
} catch(GlobalException ge) {

doCleanup();
}

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

29

Nested Conversations

• Conversations allow nesting

• Exception first signaled to nested conversation. If can
not be handled, then propagated to next enclosing
conversation.

• With guardian, each conversation is uniquely named so
signaling exception only to nested conversation uses
target context of the conversation

• If exception is propagated (resignaled by conversation
exception handler), then target context is next context
in context list

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

30

Nested Conversations

Context Conv1

 Context Conv2

P1

P2

P3

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

31

Lookahead Conversations

• Lookahead significant conversation enhancement

– Nested conversations do not need to be
synchronized, assumes conversation succeeds

– If exception occurs, back out to most recent
conversation that contains all the processes

• Easy with guardian

– Barriers only at outermost conversation

– Check for exceptions at each lookahead entry or exit

– Guardian rules use context resolution. Similar to
exception resolution but uses contexts.

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

32

Conclusions

• We outlined the basic issues related to exception handling in
distributed systems.

• We have presented here a model that allows a programmer to
specify global exception handling policies in a distributed
program.

• This model uses “contexts” to determine which processes should
participate in recovery, and which handler should be used by a
participating process.

• This model has more flexibility in handling concurrent exceptions
in distributed system as compared to other existing models based
on conversations or transactions.
– It is more basic, and hence it can be used to implement other

models.

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

33

Simple Primary-Backup Example

• Race conditions and asynchrony

• A primary-backup system with multiple processes.

• When a process starts, it needs to determine if primary
exists. If not, then it becomes the primary; otherwise it
becomes the backup.

• When the backup joins or restarted, the primary
should know which are the available backup processes.

• If the primary fails, the backup with the smallest index
becomes the primary.

• A failed primary becomes backup on restart.

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

34

Structure of a Participant Process

 Guardian g;
 ExceptionList el = PrimaryFailed, PrimaryExists;
 g.enableContext(“Main”, el); //Main context starts here
 role = Primary;
 while (True)
 try {
 g.checkExceptionStatus();
 if (role == Primary) { primaryService();
 } else backupService();
 } catch(PrimaryExists) { if (g.propagate()) throw; role = Backup;
 } catch(PrimaryFailed) { if (g.propagate()) throw; role = Primary;
 }
 }

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

35

Guardian Rule

// Rule 1
if (signaled exception == Join) then {
 let p be the participant satisfying Pe = */Primary;
 OEL.insert(p, BackupJoined(*/Primary))
 let p = Join.signaler;
 if (guardian.groupCount > 1) then
 OEL.insert(p, PrimaryExists(*/Main));
}

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

36

Primary Server Procedure

primaryService() {
 ExceptionList el = BackupFailed, BackJoined, PrimaryServiceFailure;
 g.enableContext(“Primary”, el);
 Boolean backupAvailable = True;
 try { while(True)
 try { g.checkExceptionStatus();
 processRequest();
 if (backupAvailable) sendUpdate();
 sendReplyToClient(); }
 catch(PrimaryServiceFailure) { g.gthrow(PrimaryFailed); }
 catch(BackupFailed) { backupAvailable = False;}
 catch(BackupJoined) { backupAvailable = True; }
 } finally { g.removeContext(); }
}

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

37

Guardian Rule

 // Rule 2
if (signaled exception == PrimaryFailed) then {
 let p be the participant satisfying Pe= */Primary;
 OEL.insert(p, PrimaryFailed(Init));
 let PL be the list of participants satisfying Pe = */Backup {
 let p = participant with smallest index in PL;

 OEL.insert(p, PrimaryFailed(*/Main));
 }
}

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

38

Primary-Backup Example

Primary Backup Backup

Guardian

PrimaryFailed PrimaryFailed (.*/Main)

P1 P2 P3

PrimaryFailed (Init)

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

39

Structure of a Participant Process

 Guardian g;
 ExceptionList el = PrimaryFailed, PrimaryExists;
 g.enableContext(“Main”, el); //Main context starts here
 role = Primary;
 while (True)
 try {
 g.checkExceptionStatus();
 if (role == Primary) { primaryService();
 } else backupService();
 } catch(PrimaryExists e) { if (g.propagate()) throw e; role = Backup;
 } catch(PrimaryFailed e) { if (g.propagate()) throw e; role = Primary;
 }
 }

July 21, 2003 ECOOP Workshop - Darmstadt,
Germay

40

Guardian Rule

// Rule 3

if (signaled exception == BackupFailed) then {

 let p = Ps = PL satisfying Pe = */Primary;

 OEL.insert(p, BackupFailed(*/Primary) ;

 let p =BackupFailed.signaler;

 OEL.insert(p, BackupFailed(Init));

}

