
1 July, 21, 2003 ECOOP

Using Exception Handling for
Fault-Tolerance in

Mobile Coordination-Based
Environments

University of Newcastle upon Tyne

UK

University of Geneva

Switzerland

Alexander RomanovskyGiovanna Di Marzo Serugendo

2 July, 21, 2003 ECOOP

Content

1. Introduction

2. Motivations and Requirements

3. Solutions

4. Working Example

5. Future Work

3 July, 21, 2003 ECOOP

Introduction:
Fault Tolerance by Exception Handling

• Fault tolerance: error detection and error recovery

• Types of faults: process (agent) mistakes, environmental
faults, mismatches, online upgrades/changes of the

environment or in other mobile processes, application

developers’ mistakes, users’ mistakes, malicious faults and all
types of errors propagated from the underlying levels (OS,

middleware, hardware) when they fail to deliver the required

services

• This requires much more than software tolerance of hardware

faults (ACID transactions, replications, atomic broadcasts,

etc.)

4 July, 21, 2003 ECOOP

Introduction:
Fault Tolerance by Exception Handling

• We need software fault tolerance at the application level

• Forward error recovery (no rollback/backward error recovery)

• Exception handling as a means

• Separation of the normal and abnormal behaviour: separation

of the code and of the flows of control

5 July, 21, 2003 ECOOP

Introduction:
Exception Handling Techniques

• Choice of exception handling techniques depends on many

things such as the design paradigm, application types,

computational models, types of faults, the environment, etc.

• The challenge is to develop novel exception handling

techniques suitable for mobile systems based on the
coordination paradigm

• Definitely not Java or RMI Java exception handling

• Definitely not conventional OO exception handling

6 July, 21, 2003 ECOOP

Motivations and Requirements:
Specific Characteristics and their Effects

• Processes are mobile. Very special exception handling

techniques suitable for mobile systems: processes can leave

the location and move to another location, the execution
environment and the resources available can change on the

fly

• Asynchronous communication. Decoupling producers and

consumers, anonymous communication. Examples: event-

based and data-driven systems, a la Linda (e.g. MARS, Lime,
Lana)

• What if the process producing an erroneous data (event,

tuple) moves? Or, if it becomes involved in other

computations or completes its execution before an

exception is signalled by the consumer of data?

7 July, 21, 2003 ECOOP

Motivations and Requirements:
Specific Characteristics and their Effects

• Exceptions cannot be treated as the normal events or tuples

(Lana)

– No separation of normal and abnormal behaviour

– No guarantees that each exception is handled

– No clear how to involve the producer cleanly

– No special support for exception handling (error-prone)

• Similar problems with the standard notification mechanism

– Its use is not compulsory

– its use is intermixed with the normal code of the event producer (error

prone)

– …

8 July, 21, 2003 ECOOP

Motivations and Requirements:
General Requirements

• In spite of asynchronous communication all exceptions have
to be caught and handled. Two possible solutions:

– Chase the producer of the event causing the exception

– Create a local handler process but only when an process signals an
exception

• Choose dynamically whom to inform (flexibility)

• Inform several processes about exceptions (flexibility)

• Scopes (i.e. the exception handling contexts) should include

all the processes to be involved in handling, for example, all

processes (possibly) contaminated by the error:

– Defined as all processes in a particular location

– Dynamically defined by mutual agreements among a number of
cooperating processes

– Use knowledge-management to define it (cf M.Klein’s work)

9 July, 21, 2003 ECOOP

Specialised process H(E) is locally created when an exception

E is signalled by the EventConsumer

Solutions

EventProducer is not involved, handling is decoupled from it

H(E) always exists - handling is guaranteed

The handler process is created only when an exception is

signalled outside EventConsumer

10 July, 21, 2003 ECOOP

H(E) is usually designed by the developer of EventProducer

Alternatively EventConsumer can provide a handler Hc(E), in

which case it overrides the initial one

Each tuple T has a number of exceptions declared in its

signature in addition to a set of parameters

We are working on adding flexibility by:

• allowing several handlers

• allowing dynamic association of handlers with the tuple

• allowing any existing process to join handling

• allowing EventConsumer to move

Solutions

11 July, 21, 2003 ECOOP

Market place. The buyer and the seller processes

The seller inserts the selling request into the local tuple

space. The buyer finds it and proposes a contract, which

can be accepted by the seller. After that the payment

starts, it is executed by transferring money from the buyer-

purse ot the seller e-purse

Working Example

12 July, 21, 2003 ECOOP

The Buyer asks its E-Purse to release the money

The Buyer provides a name of the handler (Handler1)

The E-Purse signals an exception because there is not enough money

Handler1 accesses the buyer’s bank account to transfer money to

the e-purse

Working Example

13 July, 21, 2003 ECOOP

In Lana:

• the interacting processes have to wait until all notifications have

been received (this essentially undermines the asynchrony which

the model promotes)

• Processes can freely move without waiting for all notifications

• All exception handling code is intermixed with the normal

behaviour (which error prone, not flexible - we can use different

handlers for the same exceptions - e.g. in different locations)

Working Example

14 July, 21, 2003 ECOOP

Implementation and experiments

Cooperative handling by several mobile processes

Exception handling context

Nesting of contexts

Future work

